View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.geometry.euclidean.threed.shape;
18  
19  import java.text.MessageFormat;
20  import java.util.List;
21  import java.util.stream.Collectors;
22  import java.util.stream.Stream;
23  
24  import org.apache.commons.geometry.core.partitioning.bsp.RegionCutRule;
25  import org.apache.commons.geometry.euclidean.AbstractNSphere;
26  import org.apache.commons.geometry.euclidean.threed.Plane;
27  import org.apache.commons.geometry.euclidean.threed.Planes;
28  import org.apache.commons.geometry.euclidean.threed.RegionBSPTree3D;
29  import org.apache.commons.geometry.euclidean.threed.RegionBSPTree3D.RegionNode3D;
30  import org.apache.commons.geometry.euclidean.threed.Vector3D;
31  import org.apache.commons.geometry.euclidean.threed.line.Line3D;
32  import org.apache.commons.geometry.euclidean.threed.line.LineConvexSubset3D;
33  import org.apache.commons.geometry.euclidean.threed.line.LinecastPoint3D;
34  import org.apache.commons.geometry.euclidean.threed.line.Linecastable3D;
35  import org.apache.commons.geometry.euclidean.threed.mesh.SimpleTriangleMesh;
36  import org.apache.commons.geometry.euclidean.threed.mesh.TriangleMesh;
37  import org.apache.commons.numbers.core.Precision;
38  
39  /** Class representing a 3 dimensional sphere in Euclidean space.
40   */
41  public final class Sphere extends AbstractNSphere<Vector3D> implements Linecastable3D {
42  
43      /** Message used when requesting a sphere approximation with an invalid subdivision number. */
44      private static final String INVALID_SUBDIVISION_MESSAGE =
45          "Number of sphere approximation subdivisions must be greater than or equal to zero; was {0}";
46  
47      /** Constant equal to {@code 4 * pi}. */
48      private static final double FOUR_PI = 4.0 * Math.PI;
49  
50      /** Constant equal to {@code (4/3) * pi}. */
51      private static final double FOUR_THIRDS_PI = FOUR_PI / 3.0;
52  
53      /** Construct a new sphere from its component parts.
54       * @param center the center of the sphere
55       * @param radius the sphere radius
56       * @param precision precision context used to compare floating point numbers
57       * @throws IllegalArgumentException if center is not finite or radius is not finite or is
58       *      less than or equal to zero as evaluated by the given precision context
59       */
60      private Sphere(final Vector3D center, final double radius, final Precision.DoubleEquivalence precision) {
61          super(center, radius, precision);
62      }
63  
64      /** {@inheritDoc} */
65      @Override
66      public double getSize() {
67          final double r = getRadius();
68          return FOUR_THIRDS_PI * r * r * r;
69      }
70  
71      /** {@inheritDoc} */
72      @Override
73      public double getBoundarySize() {
74          final double r = getRadius();
75          return FOUR_PI * r * r;
76      }
77  
78      /** {@inheritDoc} */
79      @Override
80      public Vector3D project(final Vector3D pt) {
81          return project(pt, Vector3D.Unit.PLUS_X);
82      }
83  
84      /** Build an approximation of this sphere using a {@link RegionBSPTree3D}. The approximation is constructed by
85       * taking an octahedron (8-sided polyhedron with triangular faces) inscribed in the sphere and subdividing each
86       * triangular face {@code subdivisions} number of times, each time projecting the newly created vertices onto the
87       * sphere surface. Each triangle subdivision produces 4 triangles, meaning that the total number of triangles
88       * inserted into tree is equal to \(8 \times 4^s\), where \(s\) is the number of subdivisions. For
89       * example, calling this method with {@code subdivisions} equal to {@code 3} will produce a tree having
90       * \(8 \times 4^3 = 512\) triangular facets inserted. See the table below for other examples. The returned BSP
91       * tree also contains structural cuts to reduce the overall height of the tree.
92       *
93       * <table>
94       *  <caption>Subdivisions to Triangle Counts</caption>
95       *  <thead>
96       *      <tr>
97       *          <th>Subdivisions</th>
98       *          <th>Triangles</th>
99       *      </tr>
100      *  </thead>
101      *  <tbody>
102      *      <tr><td>0</td><td>8</td></tr>
103      *      <tr><td>1</td><td>32</td></tr>
104      *      <tr><td>2</td><td>128</td></tr>
105      *      <tr><td>3</td><td>512</td></tr>
106      *      <tr><td>4</td><td>2048</td></tr>
107      *      <tr><td>5</td><td>8192</td></tr>
108      *  </tbody>
109      * </table>
110      *
111      * <p>Care must be taken when using this method with large subdivision numbers so that floating point errors
112      * do not interfere with the creation of the planes and triangles in the tree. For example, if the number of
113      * subdivisions is too high, the subdivided triangle points may become equivalent according to the sphere's
114      * {@link #getPrecision() precision context} and plane creation may fail. Or plane creation may succeed but
115      * insertion of the plane into the tree may fail for similar reasons. In general, it is best to use the lowest
116      * subdivision number practical for the intended purpose.</p>
117      * @param subdivisions the number of triangle subdivisions to use when creating the tree; the total number of
118      *      triangular facets inserted into the returned tree is equal to \(8 \times 4^s\), where \(s\) is the number
119      *      of subdivisions
120      * @return a BSP tree containing an approximation of the sphere
121      * @throws IllegalArgumentException if {@code subdivisions} is less than zero
122      * @throws IllegalStateException if tree creation fails for the given subdivision count
123      * @see #toTriangleMesh(int)
124      */
125     public RegionBSPTree3D toTree(final int subdivisions) {
126         if (subdivisions < 0) {
127             throw new IllegalArgumentException(MessageFormat.format(INVALID_SUBDIVISION_MESSAGE, subdivisions));
128         }
129         return new SphereTreeApproximationBuilder(this, subdivisions).build();
130     }
131 
132     /** Build an approximation of this sphere using a {@link TriangleMesh}. The approximation is constructed by
133      * taking an octahedron (8-sided polyhedron with triangular faces) inscribed in the sphere and subdividing each
134      * triangular face {@code subdivisions} number of times, each time projecting the newly created vertices onto the
135      * sphere surface. Each triangle subdivision produces 4 triangles, meaning that the total number of triangles
136      * in the returned mesh is equal to \(8 \times 4^s\), where \(s\) is the number of subdivisions. For
137      * example, calling this method with {@code subdivisions} equal to {@code 3} will produce a mesh having
138      * \(8 \times 4^3 = 512\) triangular facets inserted. See the table below for other examples.
139      *
140      * <table>
141      *  <caption>Subdivisions to Triangle Counts</caption>
142      *  <thead>
143      *      <tr>
144      *          <th>Subdivisions</th>
145      *          <th>Triangles</th>
146      *      </tr>
147      *  </thead>
148      *  <tbody>
149      *      <tr><td>0</td><td>8</td></tr>
150      *      <tr><td>1</td><td>32</td></tr>
151      *      <tr><td>2</td><td>128</td></tr>
152      *      <tr><td>3</td><td>512</td></tr>
153      *      <tr><td>4</td><td>2048</td></tr>
154      *      <tr><td>5</td><td>8192</td></tr>
155      *  </tbody>
156      * </table>
157      *
158      * <p><strong>BSP Tree Conversion</strong></p>
159      * <p>Inserting the boundaries of a sphere mesh approximation directly into a BSP tree will invariably result
160      * in poor performance: since the region is convex the constructed BSP tree degenerates into a simple linked
161      * list of nodes. If a BSP tree is needed, users should prefer the {@link #toTree(int)} method, which creates
162      * balanced tree approximations directly, or the {@link RegionBSPTree3D.PartitionedRegionBuilder3D} class,
163      * which can be used to insert the mesh faces into a pre-partitioned tree.
164      * </p>
165      * @param subdivisions the number of triangle subdivisions to use when creating the mesh; the total number of
166      *      triangular faces in the returned mesh is equal to \(8 \times 4^s\), where \(s\) is the number
167      *      of subdivisions
168      * @return a triangle mesh approximation of the sphere
169      * @throws IllegalArgumentException if {@code subdivisions} is less than zero
170      * @see #toTree(int)
171      */
172     public TriangleMesh toTriangleMesh(final int subdivisions) {
173         if (subdivisions < 0) {
174             throw new IllegalArgumentException(MessageFormat.format(INVALID_SUBDIVISION_MESSAGE, subdivisions));
175         }
176         return new SphereMeshApproximationBuilder(this, subdivisions).build();
177     }
178 
179     /** Get the intersections of the given line with this sphere. The returned list will
180      * contain either 0, 1, or 2 points.
181      * <ul>
182      *      <li><strong>2 points</strong> - The line is a secant line and intersects the sphere at two
183      *      distinct points. The points are ordered such that the first point in the list is the first point
184      *      encountered when traveling in the direction of the line. (In other words, the points are ordered
185      *      by increasing abscissa value.)
186      *      </li>
187      *      <li><strong>1 point</strong> - The line is a tangent line and only intersects the sphere at a
188      *      single point (as evaluated by the sphere's precision context).
189      *      </li>
190      *      <li><strong>0 points</strong> - The line does not intersect the sphere.</li>
191      * </ul>
192      * @param line line to intersect with the sphere
193      * @return a list of intersection points between the given line and this sphere
194      */
195     public List<Vector3D> intersections(final Line3D line) {
196         return intersections(line, Line3D::abscissa, Line3D::distance);
197     }
198 
199     /** Get the first intersection point between the given line and this sphere, or null
200      * if no such point exists. The "first" intersection point is the first such point
201      * encountered when traveling in the direction of the line from infinity.
202      * @param line line to intersect with the sphere
203      * @return the first intersection point between the given line and this instance or
204      *      null if no such point exists
205      */
206     public Vector3D firstIntersection(final Line3D line) {
207         return firstIntersection(line, Line3D::abscissa, Line3D::distance);
208     }
209 
210     /** {@inheritDoc} */
211     @Override
212     public List<LinecastPoint3D> linecast(final LineConvexSubset3D subset) {
213         return getLinecastStream(subset)
214                 .collect(Collectors.toList());
215     }
216 
217     /** {@inheritDoc} */
218     @Override
219     public LinecastPoint3D linecastFirst(final LineConvexSubset3D subset) {
220         return getLinecastStream(subset)
221                 .findFirst()
222                 .orElse(null);
223     }
224 
225     /** Get a stream containing the linecast intersection points of the given
226      * line subset with this instance.
227      * @param subset line subset to intersect against this instance
228      * @return a stream containing linecast intersection points
229      */
230     private Stream<LinecastPoint3D> getLinecastStream(final LineConvexSubset3D subset) {
231         return intersections(subset.getLine()).stream()
232             .filter(subset::contains)
233             .map(pt -> new LinecastPoint3D(pt, getCenter().directionTo(pt), subset.getLine()));
234     }
235 
236     /** Construct a sphere from a center point and radius.
237      * @param center the center of the sphere
238      * @param radius the sphere radius
239      * @param precision precision context used to compare floating point numbers
240      * @return a sphere constructed from the given center point and radius
241      * @throws IllegalArgumentException if center is not finite or radius is not finite or is
242      *      less than or equal to zero as evaluated by the given precision context
243      */
244     public static Sphere from(final Vector3D center, final double radius, final Precision.DoubleEquivalence precision) {
245         return new Sphere(center, radius, precision);
246     }
247 
248     /** Internal class used to construct hyperplane-bounded approximations of spheres as BSP trees. The class
249      * begins with an octahedron inscribed in the sphere and then subdivides each triangular face a specified
250      * number of times.
251      */
252     private static final class SphereTreeApproximationBuilder {
253 
254         /** Threshold used to determine when to stop inserting structural cuts and begin adding facets. */
255         private static final int PARTITION_THRESHOLD = 2;
256 
257         /** The sphere that an approximation is being created for. */
258         private final Sphere sphere;
259 
260         /** The number of triangular subdivisions to use. */
261         private final int subdivisions;
262 
263         /** Construct a new builder for creating a BSP tree approximation of the given sphere.
264          * @param sphere the sphere to create an approximation of
265          * @param subdivisions the number of triangle subdivisions to use in tree creation
266          */
267         SphereTreeApproximationBuilder(final Sphere sphere, final int subdivisions) {
268             this.sphere = sphere;
269             this.subdivisions = subdivisions;
270         }
271 
272         /** Build the sphere approximation BSP tree.
273          * @return the sphere approximation BSP tree
274          * @throws IllegalStateException if tree creation fails for the configured subdivision count
275          */
276         RegionBSPTree3D build() {
277             final RegionBSPTree3D tree = RegionBSPTree3D.empty();
278 
279             final Vector3D center = sphere.getCenter();
280             final double radius = sphere.getRadius();
281             final Precision.DoubleEquivalence precision = sphere.getPrecision();
282 
283             // insert the primary split planes
284             final Plane plusXPlane = Planes.fromPointAndNormal(center, Vector3D.Unit.PLUS_X, precision);
285             final Plane plusYPlane = Planes.fromPointAndNormal(center, Vector3D.Unit.PLUS_Y, precision);
286             final Plane plusZPlane = Planes.fromPointAndNormal(center, Vector3D.Unit.PLUS_Z, precision);
287 
288             tree.insert(plusXPlane.span(), RegionCutRule.INHERIT);
289             tree.insert(plusYPlane.span(), RegionCutRule.INHERIT);
290             tree.insert(plusZPlane.span(), RegionCutRule.INHERIT);
291 
292             // create the vertices for the octahedron
293             final double cx = center.getX();
294             final double cy = center.getY();
295             final double cz = center.getZ();
296 
297             final Vector3D maxX = Vector3D.of(cx + radius, cy, cz);
298             final Vector3D minX = Vector3D.of(cx - radius, cy, cz);
299 
300             final Vector3D maxY = Vector3D.of(cx, cy + radius, cz);
301             final Vector3D minY = Vector3D.of(cx, cy - radius, cz);
302 
303             final Vector3D maxZ = Vector3D.of(cx, cy, cz + radius);
304             final Vector3D minZ = Vector3D.of(cx, cy, cz - radius);
305 
306             // partition and subdivide the face triangles and insert them into the tree
307             final RegionNode3D root = tree.getRoot();
308 
309             try {
310                 partitionAndInsert(root.getMinus().getMinus().getMinus(), minX, minZ, minY, 0);
311                 partitionAndInsert(root.getMinus().getMinus().getPlus(), minX, minY, maxZ, 0);
312 
313                 partitionAndInsert(root.getMinus().getPlus().getMinus(), minX, maxY, minZ, 0);
314                 partitionAndInsert(root.getMinus().getPlus().getPlus(), minX, maxZ, maxY, 0);
315 
316                 partitionAndInsert(root.getPlus().getMinus().getMinus(), maxX, minY, minZ, 0);
317                 partitionAndInsert(root.getPlus().getMinus().getPlus(), maxX, maxZ, minY, 0);
318 
319                 partitionAndInsert(root.getPlus().getPlus().getMinus(), maxX, minZ, maxY, 0);
320                 partitionAndInsert(root.getPlus().getPlus().getPlus(), maxX, maxY, maxZ, 0);
321             } catch (final IllegalStateException | IllegalArgumentException exc) {
322                 // standardize any tree construction failure as an IllegalStateException
323                 throw new IllegalStateException("Failed to construct sphere approximation with subdivision count " +
324                         subdivisions + ": " + exc.getMessage(), exc);
325             }
326 
327             return tree;
328         }
329 
330         /** Recursively insert structural BSP tree cuts into the given node and then insert subdivided triangles
331          * when a target subdivision level is reached. The structural BSP tree cuts are used to help reduce the
332          * overall depth of the BSP tree.
333          * @param node the node to insert into
334          * @param p1 first triangle point
335          * @param p2 second triangle point
336          * @param p3 third triangle point
337          * @param level current subdivision level
338          */
339         private void partitionAndInsert(final RegionNode3D node,
340                                         final Vector3D p1, final Vector3D p2, final Vector3D p3, final int level) {
341 
342             if (subdivisions - level > PARTITION_THRESHOLD) {
343                 final int nextLevel = level + 1;
344 
345                 final Vector3D center = sphere.getCenter();
346 
347                 final Vector3D m1 = sphere.project(p1.lerp(p2, 0.5));
348                 final Vector3D m2 = sphere.project(p2.lerp(p3, 0.5));
349                 final Vector3D m3 = sphere.project(p3.lerp(p1, 0.5));
350 
351                 RegionNode3D curNode = node;
352 
353                 checkedCut(curNode, createPlane(m3, m2, center), RegionCutRule.INHERIT);
354                 partitionAndInsert(curNode.getPlus(), m3, m2, p3, nextLevel);
355 
356                 curNode = curNode.getMinus();
357                 checkedCut(curNode, createPlane(m2, m1, center), RegionCutRule.INHERIT);
358                 partitionAndInsert(curNode.getPlus(), m1, p2, m2, nextLevel);
359 
360                 curNode = curNode.getMinus();
361                 checkedCut(curNode, createPlane(m1, m3, center), RegionCutRule.INHERIT);
362                 partitionAndInsert(curNode.getPlus(), p1, m1, m3, nextLevel);
363 
364                 partitionAndInsert(curNode.getMinus(), m1, m2, m3, nextLevel);
365             } else {
366                 insertSubdividedTriangles(node, p1, p2, p3, level);
367             }
368         }
369 
370         /** Recursively insert subdivided triangles into the given node. Each triangle is inserted into the minus
371          * side of the previous triangle.
372          * @param node the node to insert into
373          * @param p1 first triangle point
374          * @param p2 second triangle point
375          * @param p3 third triangle point
376          * @param level the current subdivision level
377          * @return the node representing the inside of the region after insertion of all triangles
378          */
379         private RegionNode3D insertSubdividedTriangles(final RegionNode3D node,
380                                                        final Vector3D p1, final Vector3D p2, final Vector3D p3,
381                                                        final int level) {
382 
383             if (level >= subdivisions) {
384                 // base case
385                 checkedCut(node, createPlane(p1, p2, p3), RegionCutRule.MINUS_INSIDE);
386                 return node.getMinus();
387             } else {
388                 final int nextLevel = level + 1;
389 
390                 final Vector3D m1 = sphere.project(p1.lerp(p2, 0.5));
391                 final Vector3D m2 = sphere.project(p2.lerp(p3, 0.5));
392                 final Vector3D m3 = sphere.project(p3.lerp(p1, 0.5));
393 
394                 RegionNode3D curNode = node;
395                 curNode = insertSubdividedTriangles(curNode, p1, m1, m3, nextLevel);
396                 curNode = insertSubdividedTriangles(curNode, m1, p2, m2, nextLevel);
397                 curNode = insertSubdividedTriangles(curNode, m3, m2, p3, nextLevel);
398                 curNode = insertSubdividedTriangles(curNode, m1, m2, m3, nextLevel);
399 
400                 return curNode;
401             }
402         }
403 
404         /** Create a plane from the given points, using the precision context of the sphere.
405          * @param p1 first point
406          * @param p2 second point
407          * @param p3 third point
408          * @return a plane defined by the given points
409          */
410         private Plane createPlane(final Vector3D p1, final Vector3D p2, final Vector3D p3) {
411             return Planes.fromPoints(p1, p2, p3, sphere.getPrecision());
412         }
413 
414         /** Insert the cut into the given node, throwing an exception if no portion of the cutter intersects
415          * the node.
416          * @param node node to cut
417          * @param cutter plane to use to cut the node
418          * @param cutRule cut rule to apply
419          * @throws IllegalStateException if no portion of the cutter plane intersects the node
420          */
421         private void checkedCut(final RegionNode3D node, final Plane cutter, final RegionCutRule cutRule) {
422             if (!node.insertCut(cutter, cutRule)) {
423                 throw new IllegalStateException("Failed to cut BSP tree node with plane: " + cutter);
424             }
425         }
426     }
427 
428     /** Internal class used to construct geodesic mesh sphere approximations. The class begins with an octahedron
429      * inscribed in the sphere and then subdivides each triangular face a specified number of times.
430      */
431     private static final class SphereMeshApproximationBuilder {
432 
433         /** The sphere that an approximation is being created for. */
434         private final Sphere sphere;
435 
436         /** The number of triangular subdivisions to use. */
437         private final int subdivisions;
438 
439         /** Mesh builder object. */
440         private final SimpleTriangleMesh.Builder builder;
441 
442         /** Construct a new builder for creating a mesh approximation of the given sphere.
443          * @param sphere the sphere to create an approximation of
444          * @param subdivisions the number of triangle subdivisions to use in mesh creation
445          */
446         SphereMeshApproximationBuilder(final Sphere sphere, final int subdivisions) {
447             this.sphere = sphere;
448             this.subdivisions = subdivisions;
449             this.builder = SimpleTriangleMesh.builder(sphere.getPrecision());
450         }
451 
452         /** Build the mesh approximation of the configured sphere.
453          * @return the mesh approximation of the configured sphere
454          */
455         public SimpleTriangleMesh build() {
456             final Vector3D center = sphere.getCenter();
457             final double radius = sphere.getRadius();
458 
459             // create the vertices for the octahedron
460             final double cx = center.getX();
461             final double cy = center.getY();
462             final double cz = center.getZ();
463 
464             final Vector3D maxX = Vector3D.of(cx + radius, cy, cz);
465             final Vector3D minX = Vector3D.of(cx - radius, cy, cz);
466 
467             final Vector3D maxY = Vector3D.of(cx, cy + radius, cz);
468             final Vector3D minY = Vector3D.of(cx, cy - radius, cz);
469 
470             final Vector3D maxZ = Vector3D.of(cx, cy, cz + radius);
471             final Vector3D minZ = Vector3D.of(cx, cy, cz - radius);
472 
473             addSubdivided(minX, minZ, minY, 0);
474             addSubdivided(minX, minY, maxZ, 0);
475 
476             addSubdivided(minX, maxY, minZ, 0);
477             addSubdivided(minX, maxZ, maxY, 0);
478 
479             addSubdivided(maxX, minY, minZ, 0);
480             addSubdivided(maxX, maxZ, minY, 0);
481 
482             addSubdivided(maxX, minZ, maxY, 0);
483             addSubdivided(maxX, maxY, maxZ, 0);
484 
485             return builder.build();
486         }
487 
488         /** Recursively subdivide and add triangular faces between the given outer boundary points.
489          * @param p1 first point
490          * @param p2 second point
491          * @param p3 third point
492          * @param level recursion level; counts up
493          */
494         private void addSubdivided(final Vector3D p1, final Vector3D p2, final Vector3D p3, final int level) {
495             if (level >= subdivisions) {
496                 // base case
497                 builder.addFaceUsingVertices(p1, p2, p3);
498             } else {
499                 // subdivide
500                 final int nextLevel = level + 1;
501 
502                 final Vector3D m1 = sphere.project(p1.lerp(p2, 0.5));
503                 final Vector3D m2 = sphere.project(p2.lerp(p3, 0.5));
504                 final Vector3D m3 = sphere.project(p3.lerp(p1, 0.5));
505 
506                 addSubdivided(p1, m1, m3, nextLevel);
507                 addSubdivided(m1, p2, m2, nextLevel);
508                 addSubdivided(m3, m2, p3, nextLevel);
509                 addSubdivided(m1, m2, m3, nextLevel);
510             }
511         }
512     }
513 }