Uses of Interface
org.apache.commons.math4.legacy.ml.clustering.Clusterable
-
Packages that use Clusterable Package Description org.apache.commons.math4.legacy.ml.clustering Clustering algorithms.org.apache.commons.math4.legacy.ml.clustering.evaluation Cluster evaluation methods. -
-
Uses of Clusterable in org.apache.commons.math4.legacy.ml.clustering
Classes in org.apache.commons.math4.legacy.ml.clustering with type parameters of type Clusterable Modifier and Type Class Description class
CentroidCluster<T extends Clusterable>
A Cluster used by centroid-based clustering algorithms.class
Cluster<T extends Clusterable>
Cluster holding a set ofClusterable
points.class
Clusterer<T extends Clusterable>
Base class for clustering algorithms.class
DBSCANClusterer<T extends Clusterable>
DBSCAN (density-based spatial clustering of applications with noise) algorithm.class
ElkanKMeansPlusPlusClusterer<T extends Clusterable>
Implementation of k-means++ algorithm.class
FuzzyKMeansClusterer<T extends Clusterable>
Fuzzy K-Means clustering algorithm.class
KMeansPlusPlusClusterer<T extends Clusterable>
Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.class
MiniBatchKMeansClusterer<T extends Clusterable>
Clustering algorithm based on KMeans.class
MultiKMeansPlusPlusClusterer<T extends Clusterable>
A wrapper around a k-means++ clustering algorithm which performs multiple trials and returns the best solution.Classes in org.apache.commons.math4.legacy.ml.clustering that implement Clusterable Modifier and Type Class Description class
DoublePoint
A simple implementation ofClusterable
for points with double coordinates.Methods in org.apache.commons.math4.legacy.ml.clustering with type parameters of type Clusterable Modifier and Type Method Description static <T extends Clusterable>
ClusterRankingClusterEvaluator. ranking(ClusterEvaluator eval)
Converts to aranking function
(as required by clustering implementations).Methods in org.apache.commons.math4.legacy.ml.clustering that return Clusterable Modifier and Type Method Description Clusterable
Cluster. centroid()
Computes the centroid of the cluster.Methods in org.apache.commons.math4.legacy.ml.clustering with parameters of type Clusterable Modifier and Type Method Description protected double
Clusterer. distance(Clusterable p1, Clusterable p2)
Calculates the distance between twoClusterable
instances with the configuredDistanceMeasure
.Method parameters in org.apache.commons.math4.legacy.ml.clustering with type arguments of type Clusterable Modifier and Type Method Description double
ClusterRanking. compute(List<? extends Cluster<? extends Clusterable>> clusters)
Computes the rank (higher is better).double
ClusterEvaluator. score(List<? extends Cluster<? extends Clusterable>> cList)
Constructors in org.apache.commons.math4.legacy.ml.clustering with parameters of type Clusterable Constructor Description CentroidCluster(Clusterable center)
Build a cluster centered at a specified point. -
Uses of Clusterable in org.apache.commons.math4.legacy.ml.clustering.evaluation
Method parameters in org.apache.commons.math4.legacy.ml.clustering.evaluation with type arguments of type Clusterable Modifier and Type Method Description double
CalinskiHarabasz. score(List<? extends Cluster<? extends Clusterable>> clusters)
double
SumOfClusterVariances. score(List<? extends Cluster<? extends Clusterable>> clusters)
-