View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math4.legacy.analysis.interpolation;
18  
19  import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm;
20  import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm;
21  import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
22  import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
23  import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
24  
25  /**
26   * Implements the <a href=
27   * "http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html">
28   * Divided Difference Algorithm</a> for interpolation of real univariate
29   * functions. For reference, see <b>Introduction to Numerical Analysis</b>,
30   * ISBN 038795452X, chapter 2.
31   * <p>
32   * The actual code of Neville's evaluation is in PolynomialFunctionLagrangeForm,
33   * this class provides an easy-to-use interface to it.</p>
34   *
35   * @since 1.2
36   */
37  public class DividedDifferenceInterpolator
38      implements UnivariateInterpolator {
39      /**
40       * Compute an interpolating function for the dataset.
41       *
42       * @param x Interpolating points array.
43       * @param y Interpolating values array.
44       * @return a function which interpolates the dataset.
45       * @throws DimensionMismatchException if the array lengths are different.
46       * @throws NumberIsTooSmallException if the number of points is less than 2.
47       * @throws NonMonotonicSequenceException if {@code x} is not sorted in
48       * strictly increasing order.
49       */
50      @Override
51      public PolynomialFunctionNewtonForm interpolate(double[] x, double[] y)
52          throws DimensionMismatchException,
53                 NumberIsTooSmallException,
54                 NonMonotonicSequenceException {
55          /*
56           * a[] and c[] are defined in the general formula of Newton form:
57           * p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
58           *        a[n](x-c[0])(x-c[1])...(x-c[n-1])
59           */
60          PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
61  
62          /*
63           * When used for interpolation, the Newton form formula becomes
64           * p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
65           *        f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
66           * Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
67           * <p>
68           * Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
69           */
70          final double[] c = new double[x.length-1];
71          System.arraycopy(x, 0, c, 0, c.length);
72  
73          final double[] a = computeDividedDifference(x, y);
74          return new PolynomialFunctionNewtonForm(a, c);
75      }
76  
77      /**
78       * Return a copy of the divided difference array.
79       * <p>
80       * The divided difference array is defined recursively by <pre>
81       * f[x0] = f(x0)
82       * f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
83       * </pre>
84       * <p>
85       * The computational complexity is \(O(n^2)\) where \(n\) is the common
86       * length of {@code x} and {@code y}.</p>
87       *
88       * @param x Interpolating points array.
89       * @param y Interpolating values array.
90       * @return a fresh copy of the divided difference array.
91       * @throws DimensionMismatchException if the array lengths are different.
92       * @throws NumberIsTooSmallException if the number of points is less than 2.
93       * @throws NonMonotonicSequenceException
94       * if {@code x} is not sorted in strictly increasing order.
95       */
96      protected static double[] computeDividedDifference(final double[] x, final double[] y)
97          throws DimensionMismatchException,
98                 NumberIsTooSmallException,
99                 NonMonotonicSequenceException {
100         PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
101 
102         final double[] divdiff = y.clone(); // initialization
103 
104         final int n = x.length;
105         final double[] a = new double [n];
106         a[0] = divdiff[0];
107         for (int i = 1; i < n; i++) {
108             for (int j = 0; j < n-i; j++) {
109                 final double denominator = x[j+i] - x[j];
110                 divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
111             }
112             a[i] = divdiff[0];
113         }
114 
115         return a;
116     }
117 }