1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.math4.legacy.analysis.interpolation; 18 19 import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction; 20 import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction; 21 import org.apache.commons.math4.legacy.exception.DimensionMismatchException; 22 import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException; 23 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; 24 import org.apache.commons.math4.legacy.core.MathArrays; 25 26 /** 27 * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set. 28 * <p> 29 * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction} 30 * consisting of n cubic polynomials, defined over the subintervals determined by the x values, 31 * {@code x[0] < x[i] ... < x[n].} The x values are referred to as "knot points."</p> 32 * <p> 33 * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest 34 * knot point and strictly less than the largest knot point is computed by finding the subinterval to which 35 * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where 36 * <code>i</code> is the index of the subinterval. See {@link PolynomialSplineFunction} for more details. 37 * </p> 38 * <p> 39 * The interpolating polynomials satisfy: <ol> 40 * <li>The value of the PolynomialSplineFunction at each of the input x values equals the 41 * corresponding y value.</li> 42 * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials 43 * "match up" at the knot points, as do their first and second derivatives).</li> 44 * </ol> 45 * <p> 46 * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires, 47 * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131. 48 * </p> 49 * 50 */ 51 public class SplineInterpolator implements UnivariateInterpolator { 52 /** 53 * Computes an interpolating function for the data set. 54 * @param x the arguments for the interpolation points 55 * @param y the values for the interpolation points 56 * @return a function which interpolates the data set 57 * @throws DimensionMismatchException if {@code x} and {@code y} 58 * have different sizes. 59 * @throws NumberIsTooSmallException if the size of {@code x < 3}. 60 * @throws org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException 61 * if {@code x} is not sorted in strict increasing order. 62 */ 63 @Override 64 public PolynomialSplineFunction interpolate(double[] x, double[] y) { 65 if (x.length != y.length) { 66 throw new DimensionMismatchException(x.length, y.length); 67 } 68 69 if (x.length < 3) { 70 throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, 71 x.length, 3, true); 72 } 73 74 // Number of intervals. The number of data points is n + 1. 75 final int n = x.length - 1; 76 77 MathArrays.checkOrder(x); 78 79 // Differences between knot points 80 final double[] h = new double[n]; 81 for (int i = 0; i < n; i++) { 82 h[i] = x[i + 1] - x[i]; 83 } 84 85 final double[] mu = new double[n]; 86 final double[] z = new double[n + 1]; 87 double g = 0; 88 int indexM1 = 0; 89 int index = 1; 90 int indexP1 = 2; 91 while (index < n) { 92 final double xIp1 = x[indexP1]; 93 final double xIm1 = x[indexM1]; 94 final double hIm1 = h[indexM1]; 95 final double hI = h[index]; 96 g = 2d * (xIp1 - xIm1) - hIm1 * mu[indexM1]; 97 mu[index] = hI / g; 98 z[index] = (3d * (y[indexP1] * hIm1 - y[index] * (xIp1 - xIm1)+ y[indexM1] * hI) / 99 (hIm1 * hI) - hIm1 * z[indexM1]) / g; 100 101 indexM1 = index; 102 index = indexP1; 103 indexP1 = indexP1 + 1; 104 } 105 106 // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants) 107 final double[] b = new double[n]; 108 final double[] c = new double[n + 1]; 109 final double[] d = new double[n]; 110 111 for (int j = n - 1; j >= 0; j--) { 112 final double cJp1 = c[j + 1]; 113 final double cJ = z[j] - mu[j] * cJp1; 114 final double hJ = h[j]; 115 b[j] = (y[j + 1] - y[j]) / hJ - hJ * (cJp1 + 2d * cJ) / 3d; 116 c[j] = cJ; 117 d[j] = (cJp1 - cJ) / (3d * hJ); 118 } 119 120 final PolynomialFunction[] polynomials = new PolynomialFunction[n]; 121 final double[] coefficients = new double[4]; 122 for (int i = 0; i < n; i++) { 123 coefficients[0] = y[i]; 124 coefficients[1] = b[i]; 125 coefficients[2] = c[i]; 126 coefficients[3] = d[i]; 127 polynomials[i] = new PolynomialFunction(coefficients); 128 } 129 130 return new PolynomialSplineFunction(x, polynomials); 131 } 132 }