View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math4.legacy.analysis.interpolation;
18  
19  import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction;
20  import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction;
21  import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
22  import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
23  import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
24  import org.apache.commons.math4.legacy.core.MathArrays;
25  
26  /**
27   * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.
28   * <p>
29   * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
30   * consisting of n cubic polynomials, defined over the subintervals determined by the x values,
31   * {@code x[0] < x[i] ... < x[n].}  The x values are referred to as "knot points."</p>
32   * <p>
33   * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest
34   * knot point and strictly less than the largest knot point is computed by finding the subinterval to which
35   * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where
36   * <code>i</code> is the index of the subinterval.  See {@link PolynomialSplineFunction} for more details.
37   * </p>
38   * <p>
39   * The interpolating polynomials satisfy: <ol>
40   * <li>The value of the PolynomialSplineFunction at each of the input x values equals the
41   *  corresponding y value.</li>
42   * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials
43   *  "match up" at the knot points, as do their first and second derivatives).</li>
44   * </ol>
45   * <p>
46   * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
47   * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
48   * </p>
49   *
50   */
51  public class SplineInterpolator implements UnivariateInterpolator {
52      /**
53       * Computes an interpolating function for the data set.
54       * @param x the arguments for the interpolation points
55       * @param y the values for the interpolation points
56       * @return a function which interpolates the data set
57       * @throws DimensionMismatchException if {@code x} and {@code y}
58       * have different sizes.
59       * @throws NumberIsTooSmallException if the size of {@code x < 3}.
60       * @throws org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException
61       * if {@code x} is not sorted in strict increasing order.
62       */
63      @Override
64      public PolynomialSplineFunction interpolate(double[] x, double[] y) {
65          if (x.length != y.length) {
66              throw new DimensionMismatchException(x.length, y.length);
67          }
68  
69          if (x.length < 3) {
70              throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
71                                                  x.length, 3, true);
72          }
73  
74          // Number of intervals.  The number of data points is n + 1.
75          final int n = x.length - 1;
76  
77          MathArrays.checkOrder(x);
78  
79          // Differences between knot points
80          final double[] h = new double[n];
81          for (int i = 0; i < n; i++) {
82              h[i] = x[i + 1] - x[i];
83          }
84  
85          final double[] mu = new double[n];
86          final double[] z = new double[n + 1];
87          double g = 0;
88          int indexM1 = 0;
89          int index = 1;
90          int indexP1 = 2;
91          while (index < n) {
92              final double xIp1 = x[indexP1];
93              final double xIm1 = x[indexM1];
94              final double hIm1 = h[indexM1];
95              final double hI = h[index];
96              g = 2d * (xIp1 - xIm1) - hIm1 * mu[indexM1];
97              mu[index] = hI / g;
98              z[index] = (3d * (y[indexP1] * hIm1 - y[index] * (xIp1 - xIm1)+ y[indexM1] * hI) /
99                          (hIm1 * hI) - hIm1 * z[indexM1]) / g;
100 
101             indexM1 = index;
102             index = indexP1;
103             indexP1 = indexP1 + 1;
104         }
105 
106         // cubic spline coefficients --  b is linear, c quadratic, d is cubic (original y's are constants)
107         final double[] b = new double[n];
108         final double[] c = new double[n + 1];
109         final double[] d = new double[n];
110 
111         for (int j = n - 1; j >= 0; j--) {
112             final double cJp1 = c[j + 1];
113             final double cJ = z[j] - mu[j] * cJp1;
114             final double hJ = h[j];
115             b[j] = (y[j + 1] - y[j]) / hJ - hJ * (cJp1 + 2d * cJ) / 3d;
116             c[j] = cJ;
117             d[j] = (cJp1 - cJ) / (3d * hJ);
118         }
119 
120         final PolynomialFunction[] polynomials = new PolynomialFunction[n];
121         final double[] coefficients = new double[4];
122         for (int i = 0; i < n; i++) {
123             coefficients[0] = y[i];
124             coefficients[1] = b[i];
125             coefficients[2] = c[i];
126             coefficients[3] = d[i];
127             polynomials[i] = new PolynomialFunction(coefficients);
128         }
129 
130         return new PolynomialSplineFunction(x, polynomials);
131     }
132 }