View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.linear;
19  
20  import org.apache.commons.math4.core.jdkmath.JdkMath;
21  
22  
23  /**
24   * Calculates the rank-revealing QR-decomposition of a matrix, with column pivoting.
25   * <p>The rank-revealing QR-decomposition of a matrix A consists of three matrices Q,
26   * R and P such that AP=QR.  Q is orthogonal (Q<sup>T</sup>Q = I), and R is upper triangular.
27   * If A is m&times;n, Q is m&times;m and R is m&times;n and P is n&times;n.</p>
28   * <p>QR decomposition with column pivoting produces a rank-revealing QR
29   * decomposition and the {@link #getRank(double)} method may be used to return the rank of the
30   * input matrix A.</p>
31   * <p>This class compute the decomposition using Householder reflectors.</p>
32   * <p>For efficiency purposes, the decomposition in packed form is transposed.
33   * This allows inner loop to iterate inside rows, which is much more cache-efficient
34   * in Java.</p>
35   * <p>This class is based on the class with similar name from the
36   * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
37   * following changes:</p>
38   * <ul>
39   *   <li>a {@link #getQT() getQT} method has been added,</li>
40   *   <li>the {@code solve} and {@code isFullRank} methods have been replaced
41   *   by a {@link #getSolver() getSolver} method and the equivalent methods
42   *   provided by the returned {@link DecompositionSolver}.</li>
43   * </ul>
44   *
45   * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
46   * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
47   *
48   * @since 3.2
49   */
50  public class RRQRDecomposition extends QRDecomposition {
51  
52      /** An array to record the column pivoting for later creation of P. */
53      private int[] p;
54  
55      /** Cached value of P. */
56      private RealMatrix cachedP;
57  
58  
59      /**
60       * Calculates the QR-decomposition of the given matrix.
61       * The singularity threshold defaults to zero.
62       *
63       * @param matrix The matrix to decompose.
64       *
65       * @see #RRQRDecomposition(RealMatrix, double)
66       */
67      public RRQRDecomposition(RealMatrix matrix) {
68          this(matrix, 0d);
69      }
70  
71      /**
72       * Calculates the QR-decomposition of the given matrix.
73       *
74       * @param matrix The matrix to decompose.
75       * @param threshold Singularity threshold.
76       * @see #RRQRDecomposition(RealMatrix)
77       */
78      public RRQRDecomposition(RealMatrix matrix,  double threshold) {
79          super(matrix, threshold);
80      }
81  
82      /** Decompose matrix.
83       * @param qrt transposed matrix
84       */
85      @Override
86      protected void decompose(double[][] qrt) {
87          p = new int[qrt.length];
88          for (int i = 0; i < p.length; i++) {
89              p[i] = i;
90          }
91          super.decompose(qrt);
92      }
93  
94      /** Perform Householder reflection for a minor A(minor, minor) of A.
95       *
96       * @param minor minor index
97       * @param qrt transposed matrix
98       */
99      @Override
100     protected void performHouseholderReflection(int minor, double[][] qrt) {
101         double l2NormSquaredMax = 0;
102         // Find the unreduced column with the greatest L2-Norm
103         int l2NormSquaredMaxIndex = minor;
104         for (int i = minor; i < qrt.length; i++) {
105             double l2NormSquared = 0;
106             for (int j = minor; j < qrt[i].length; j++) {
107                 l2NormSquared += qrt[i][j] * qrt[i][j];
108             }
109             if (l2NormSquared > l2NormSquaredMax) {
110                 l2NormSquaredMax = l2NormSquared;
111                 l2NormSquaredMaxIndex = i;
112             }
113         }
114         // swap the current column with that with the greated L2-Norm and record in p
115         if (l2NormSquaredMaxIndex != minor) {
116             double[] tmp1 = qrt[minor];
117             qrt[minor] = qrt[l2NormSquaredMaxIndex];
118             qrt[l2NormSquaredMaxIndex] = tmp1;
119             int tmp2 = p[minor];
120             p[minor] = p[l2NormSquaredMaxIndex];
121             p[l2NormSquaredMaxIndex] = tmp2;
122         }
123 
124         super.performHouseholderReflection(minor, qrt);
125     }
126 
127 
128     /**
129      * Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR.
130      *
131      * If no pivoting is used in this decomposition then P is equal to the identity matrix.
132      *
133      * @return a permutation matrix.
134      */
135     public RealMatrix getP() {
136         if (cachedP == null) {
137             int n = p.length;
138             cachedP = MatrixUtils.createRealMatrix(n,n);
139             for (int i = 0; i < n; i++) {
140                 cachedP.setEntry(p[i], i, 1);
141             }
142         }
143         return cachedP ;
144     }
145 
146     /**
147      * Return the effective numerical matrix rank.
148      * <p>The effective numerical rank is the number of non-negligible
149      * singular values.</p>
150      * <p>This implementation looks at Frobenius norms of the sequence of
151      * bottom right submatrices.  When a large fall in norm is seen,
152      * the rank is returned. The drop is computed as:</p>
153      * <pre>
154      *   (thisNorm/lastNorm) * rNorm &lt; dropThreshold
155      * </pre>
156      * <p>
157      * where thisNorm is the Frobenius norm of the current submatrix,
158      * lastNorm is the Frobenius norm of the previous submatrix,
159      * rNorm is is the Frobenius norm of the complete matrix
160      * </p>
161      *
162      * @param dropThreshold threshold triggering rank computation
163      * @return effective numerical matrix rank
164      */
165     public int getRank(final double dropThreshold) {
166         RealMatrix r    = getR();
167         int rows        = r.getRowDimension();
168         int columns     = r.getColumnDimension();
169         int rank        = 1;
170         double lastNorm = r.getFrobeniusNorm();
171         double rNorm    = lastNorm;
172         while (rank < JdkMath.min(rows, columns)) {
173             double thisNorm = r.getSubMatrix(rank, rows - 1, rank, columns - 1).getFrobeniusNorm();
174             if (thisNorm == 0 || (thisNorm / lastNorm) * rNorm < dropThreshold) {
175                 break;
176             }
177             lastNorm = thisNorm;
178             rank++;
179         }
180         return rank;
181     }
182 
183     /**
184      * Get a solver for finding the A &times; X = B solution in least square sense.
185      * <p>
186      * Least Square sense means a solver can be computed for an overdetermined system,
187      * (i.e. a system with more equations than unknowns, which corresponds to a tall A
188      * matrix with more rows than columns). In any case, if the matrix is singular
189      * within the tolerance set at {@link RRQRDecomposition#RRQRDecomposition(RealMatrix,
190      * double) construction}, an error will be triggered when
191      * the {@link DecompositionSolver#solve(RealVector) solve} method will be called.
192      * </p>
193      * @return a solver
194      */
195     @Override
196     public DecompositionSolver getSolver() {
197         return new Solver(super.getSolver(), this.getP());
198     }
199 
200     /** Specialized solver. */
201     private static final class Solver implements DecompositionSolver {
202 
203         /** Upper level solver. */
204         private final DecompositionSolver upper;
205 
206         /** A permutation matrix for the pivots used in the QR decomposition. */
207         private RealMatrix p;
208 
209         /**
210          * Build a solver from decomposed matrix.
211          *
212          * @param upper upper level solver.
213          * @param p permutation matrix
214          */
215         private Solver(final DecompositionSolver upper, final RealMatrix p) {
216             this.upper = upper;
217             this.p     = p;
218         }
219 
220         /** {@inheritDoc} */
221         @Override
222         public boolean isNonSingular() {
223             return upper.isNonSingular();
224         }
225 
226         /** {@inheritDoc} */
227         @Override
228         public RealVector solve(RealVector b) {
229             return p.operate(upper.solve(b));
230         }
231 
232         /** {@inheritDoc} */
233         @Override
234         public RealMatrix solve(RealMatrix b) {
235             return p.multiply(upper.solve(b));
236         }
237 
238         /**
239          * {@inheritDoc}
240          * @throws SingularMatrixException if the decomposed matrix is singular.
241          */
242         @Override
243         public RealMatrix getInverse() {
244             return solve(MatrixUtils.createRealIdentityMatrix(p.getRowDimension()));
245         }
246     }
247 }