1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package org.apache.commons.math4.legacy.linear; 19 20 import org.apache.commons.math4.core.jdkmath.JdkMath; 21 22 23 /** 24 * Calculates the rank-revealing QR-decomposition of a matrix, with column pivoting. 25 * <p>The rank-revealing QR-decomposition of a matrix A consists of three matrices Q, 26 * R and P such that AP=QR. Q is orthogonal (Q<sup>T</sup>Q = I), and R is upper triangular. 27 * If A is m×n, Q is m×m and R is m×n and P is n×n.</p> 28 * <p>QR decomposition with column pivoting produces a rank-revealing QR 29 * decomposition and the {@link #getRank(double)} method may be used to return the rank of the 30 * input matrix A.</p> 31 * <p>This class compute the decomposition using Householder reflectors.</p> 32 * <p>For efficiency purposes, the decomposition in packed form is transposed. 33 * This allows inner loop to iterate inside rows, which is much more cache-efficient 34 * in Java.</p> 35 * <p>This class is based on the class with similar name from the 36 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the 37 * following changes:</p> 38 * <ul> 39 * <li>a {@link #getQT() getQT} method has been added,</li> 40 * <li>the {@code solve} and {@code isFullRank} methods have been replaced 41 * by a {@link #getSolver() getSolver} method and the equivalent methods 42 * provided by the returned {@link DecompositionSolver}.</li> 43 * </ul> 44 * 45 * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a> 46 * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a> 47 * 48 * @since 3.2 49 */ 50 public class RRQRDecomposition extends QRDecomposition { 51 52 /** An array to record the column pivoting for later creation of P. */ 53 private int[] p; 54 55 /** Cached value of P. */ 56 private RealMatrix cachedP; 57 58 59 /** 60 * Calculates the QR-decomposition of the given matrix. 61 * The singularity threshold defaults to zero. 62 * 63 * @param matrix The matrix to decompose. 64 * 65 * @see #RRQRDecomposition(RealMatrix, double) 66 */ 67 public RRQRDecomposition(RealMatrix matrix) { 68 this(matrix, 0d); 69 } 70 71 /** 72 * Calculates the QR-decomposition of the given matrix. 73 * 74 * @param matrix The matrix to decompose. 75 * @param threshold Singularity threshold. 76 * @see #RRQRDecomposition(RealMatrix) 77 */ 78 public RRQRDecomposition(RealMatrix matrix, double threshold) { 79 super(matrix, threshold); 80 } 81 82 /** Decompose matrix. 83 * @param qrt transposed matrix 84 */ 85 @Override 86 protected void decompose(double[][] qrt) { 87 p = new int[qrt.length]; 88 for (int i = 0; i < p.length; i++) { 89 p[i] = i; 90 } 91 super.decompose(qrt); 92 } 93 94 /** Perform Householder reflection for a minor A(minor, minor) of A. 95 * 96 * @param minor minor index 97 * @param qrt transposed matrix 98 */ 99 @Override 100 protected void performHouseholderReflection(int minor, double[][] qrt) { 101 double l2NormSquaredMax = 0; 102 // Find the unreduced column with the greatest L2-Norm 103 int l2NormSquaredMaxIndex = minor; 104 for (int i = minor; i < qrt.length; i++) { 105 double l2NormSquared = 0; 106 for (int j = minor; j < qrt[i].length; j++) { 107 l2NormSquared += qrt[i][j] * qrt[i][j]; 108 } 109 if (l2NormSquared > l2NormSquaredMax) { 110 l2NormSquaredMax = l2NormSquared; 111 l2NormSquaredMaxIndex = i; 112 } 113 } 114 // swap the current column with that with the greated L2-Norm and record in p 115 if (l2NormSquaredMaxIndex != minor) { 116 double[] tmp1 = qrt[minor]; 117 qrt[minor] = qrt[l2NormSquaredMaxIndex]; 118 qrt[l2NormSquaredMaxIndex] = tmp1; 119 int tmp2 = p[minor]; 120 p[minor] = p[l2NormSquaredMaxIndex]; 121 p[l2NormSquaredMaxIndex] = tmp2; 122 } 123 124 super.performHouseholderReflection(minor, qrt); 125 } 126 127 128 /** 129 * Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR. 130 * 131 * If no pivoting is used in this decomposition then P is equal to the identity matrix. 132 * 133 * @return a permutation matrix. 134 */ 135 public RealMatrix getP() { 136 if (cachedP == null) { 137 int n = p.length; 138 cachedP = MatrixUtils.createRealMatrix(n,n); 139 for (int i = 0; i < n; i++) { 140 cachedP.setEntry(p[i], i, 1); 141 } 142 } 143 return cachedP ; 144 } 145 146 /** 147 * Return the effective numerical matrix rank. 148 * <p>The effective numerical rank is the number of non-negligible 149 * singular values.</p> 150 * <p>This implementation looks at Frobenius norms of the sequence of 151 * bottom right submatrices. When a large fall in norm is seen, 152 * the rank is returned. The drop is computed as:</p> 153 * <pre> 154 * (thisNorm/lastNorm) * rNorm < dropThreshold 155 * </pre> 156 * <p> 157 * where thisNorm is the Frobenius norm of the current submatrix, 158 * lastNorm is the Frobenius norm of the previous submatrix, 159 * rNorm is is the Frobenius norm of the complete matrix 160 * </p> 161 * 162 * @param dropThreshold threshold triggering rank computation 163 * @return effective numerical matrix rank 164 */ 165 public int getRank(final double dropThreshold) { 166 RealMatrix r = getR(); 167 int rows = r.getRowDimension(); 168 int columns = r.getColumnDimension(); 169 int rank = 1; 170 double lastNorm = r.getFrobeniusNorm(); 171 double rNorm = lastNorm; 172 while (rank < JdkMath.min(rows, columns)) { 173 double thisNorm = r.getSubMatrix(rank, rows - 1, rank, columns - 1).getFrobeniusNorm(); 174 if (thisNorm == 0 || (thisNorm / lastNorm) * rNorm < dropThreshold) { 175 break; 176 } 177 lastNorm = thisNorm; 178 rank++; 179 } 180 return rank; 181 } 182 183 /** 184 * Get a solver for finding the A × X = B solution in least square sense. 185 * <p> 186 * Least Square sense means a solver can be computed for an overdetermined system, 187 * (i.e. a system with more equations than unknowns, which corresponds to a tall A 188 * matrix with more rows than columns). In any case, if the matrix is singular 189 * within the tolerance set at {@link RRQRDecomposition#RRQRDecomposition(RealMatrix, 190 * double) construction}, an error will be triggered when 191 * the {@link DecompositionSolver#solve(RealVector) solve} method will be called. 192 * </p> 193 * @return a solver 194 */ 195 @Override 196 public DecompositionSolver getSolver() { 197 return new Solver(super.getSolver(), this.getP()); 198 } 199 200 /** Specialized solver. */ 201 private static final class Solver implements DecompositionSolver { 202 203 /** Upper level solver. */ 204 private final DecompositionSolver upper; 205 206 /** A permutation matrix for the pivots used in the QR decomposition. */ 207 private RealMatrix p; 208 209 /** 210 * Build a solver from decomposed matrix. 211 * 212 * @param upper upper level solver. 213 * @param p permutation matrix 214 */ 215 private Solver(final DecompositionSolver upper, final RealMatrix p) { 216 this.upper = upper; 217 this.p = p; 218 } 219 220 /** {@inheritDoc} */ 221 @Override 222 public boolean isNonSingular() { 223 return upper.isNonSingular(); 224 } 225 226 /** {@inheritDoc} */ 227 @Override 228 public RealVector solve(RealVector b) { 229 return p.operate(upper.solve(b)); 230 } 231 232 /** {@inheritDoc} */ 233 @Override 234 public RealMatrix solve(RealMatrix b) { 235 return p.multiply(upper.solve(b)); 236 } 237 238 /** 239 * {@inheritDoc} 240 * @throws SingularMatrixException if the decomposed matrix is singular. 241 */ 242 @Override 243 public RealMatrix getInverse() { 244 return solve(MatrixUtils.createRealIdentityMatrix(p.getRowDimension())); 245 } 246 } 247 }