Uses of Class
org.apache.commons.math4.legacy.exception.NumberIsTooSmallException
-
Packages that use NumberIsTooSmallException Package Description org.apache.commons.math4.legacy.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.apache.commons.math4.legacy.analysis.interpolation Univariate real functions interpolation algorithms.org.apache.commons.math4.legacy.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.apache.commons.math4.legacy.analysis.solvers Root finding algorithms, for univariate real functions.org.apache.commons.math4.legacy.distribution.fitting Fitting of parameters against distributions.org.apache.commons.math4.legacy.exception Specialized exceptions for algorithms errors.org.apache.commons.math4.legacy.genetics This package provides Genetic Algorithms components and implementations.org.apache.commons.math4.legacy.linear Linear algebra support.org.apache.commons.math4.legacy.ode This package provides classes to solve Ordinary Differential Equations problems.org.apache.commons.math4.legacy.ode.nonstiff This package provides classes to solve non-stiff Ordinary Differential Equations problems.org.apache.commons.math4.legacy.stat Data storage, manipulation and summary routines.org.apache.commons.math4.legacy.stat.correlation Correlations/Covariance computations.org.apache.commons.math4.legacy.stat.inference Classes providing hypothesis testing. -
-
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.analysis.differentiation
Constructors in org.apache.commons.math4.legacy.analysis.differentiation that throw NumberIsTooSmallException Constructor Description FiniteDifferencesDifferentiator(int nbPoints, double stepSize)
Build a differentiator with number of points and step size when independent variable is unbounded.FiniteDifferencesDifferentiator(int nbPoints, double stepSize, double tLower, double tUpper)
Build a differentiator with number of points and step size when independent variable is bounded. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.analysis.interpolation
Methods in org.apache.commons.math4.legacy.analysis.interpolation that throw NumberIsTooSmallException Modifier and Type Method Description protected static double[]
DividedDifferenceInterpolator. computeDividedDifference(double[] x, double[] y)
Return a copy of the divided difference array.PolynomialSplineFunction
AkimaSplineInterpolator. interpolate(double[] xvals, double[] yvals)
Computes an interpolating function for the data set.BicubicInterpolatingFunction
BicubicInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)
Compute an interpolating function for the dataset.BivariateFunction
BivariateGridInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)
Compute an interpolating function for the dataset.PolynomialSplineFunction
ClampedSplineInterpolator. interpolate(double[] x, double[] y, double fpo, double fpn)
Computes an interpolating function for the data set.PolynomialFunctionNewtonForm
DividedDifferenceInterpolator. interpolate(double[] x, double[] y)
Compute an interpolating function for the dataset.PolynomialSplineFunction
LinearInterpolator. interpolate(double[] x, double[] y)
Computes a linear interpolating function for the data set.PolynomialSplineFunction
LoessInterpolator. interpolate(double[] xval, double[] yval)
Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with aSplineInterpolator
on the resulting fit.PolynomialFunctionLagrangeForm
NevilleInterpolator. interpolate(double[] x, double[] y)
Computes an interpolating function for the data set.TricubicInterpolatingFunction
TricubicInterpolator. interpolate(double[] xval, double[] yval, double[] zval, double[][][] fval)
Compute an interpolating function for the dataset.TrivariateFunction
TrivariateGridInterpolator. interpolate(double[] xval, double[] yval, double[] zval, double[][][] fval)
Compute an interpolating function for the dataset.UnivariateFunction
UnivariatePeriodicInterpolator. interpolate(double[] xval, double[] yval)
Computes an interpolating function for the dataset.double[]
LoessInterpolator. smooth(double[] xval, double[] yval)
Compute a loess fit on the data at the original abscissae.double[]
LoessInterpolator. smooth(double[] xval, double[] yval, double[] weights)
Compute a weighted loess fit on the data at the original abscissae. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.analysis.polynomials
Methods in org.apache.commons.math4.legacy.analysis.polynomials that throw NumberIsTooSmallException Modifier and Type Method Description static double
PolynomialFunctionLagrangeForm. evaluate(double[] x, double[] y, double z)
Evaluate the Lagrange polynomial using Neville's Algorithm.static boolean
PolynomialFunctionLagrangeForm. verifyInterpolationArray(double[] x, double[] y, boolean abort)
Check that the interpolation arrays are valid.Constructors in org.apache.commons.math4.legacy.analysis.polynomials that throw NumberIsTooSmallException Constructor Description PolynomialFunctionLagrangeForm(double[] x, double[] y)
Construct a Lagrange polynomial with the given abscissas and function values.PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials)
Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.analysis.solvers
Constructors in org.apache.commons.math4.legacy.analysis.solvers that throw NumberIsTooSmallException Constructor Description BracketingNthOrderBrentSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy, int maximalOrder)
Construct a solver.BracketingNthOrderBrentSolver(double relativeAccuracy, double absoluteAccuracy, int maximalOrder)
Construct a solver.BracketingNthOrderBrentSolver(double absoluteAccuracy, int maximalOrder)
Construct a solver.FieldBracketingNthOrderBrentSolver(T relativeAccuracy, T absoluteAccuracy, T functionValueAccuracy, int maximalOrder)
Construct a solver. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.distribution.fitting
Constructors in org.apache.commons.math4.legacy.distribution.fitting that throw NumberIsTooSmallException Constructor Description MultivariateNormalMixtureExpectationMaximization(double[][] data)
Creates an object to fit a multivariate normal mixture model to data. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.exception
Subclasses of NumberIsTooSmallException in org.apache.commons.math4.legacy.exception Modifier and Type Class Description class
NotPositiveException
Exception to be thrown when the argument is negative.class
NotStrictlyPositiveException
Exception to be thrown when the argument is not greater than 0. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.genetics
Methods in org.apache.commons.math4.legacy.genetics that throw NumberIsTooSmallException Modifier and Type Method Description void
ListPopulation. setPopulationLimit(int populationLimit)
Sets the maximal population size.Constructors in org.apache.commons.math4.legacy.genetics that throw NumberIsTooSmallException Constructor Description FixedElapsedTime(long maxTime)
Create a newFixedElapsedTime
instance.FixedElapsedTime(long maxTime, TimeUnit unit)
Create a newFixedElapsedTime
instance.FixedGenerationCount(int maxGenerations)
Create a new FixedGenerationCount instance. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.linear
Subclasses of NumberIsTooSmallException in org.apache.commons.math4.legacy.linear Modifier and Type Class Description class
NonPositiveDefiniteMatrixException
Exception to be thrown when a positive definite matrix is expected.Methods in org.apache.commons.math4.legacy.linear that throw NumberIsTooSmallException Modifier and Type Method Description protected void
RealVector. checkIndices(int start, int end)
Checks that the indices of a subvector are valid.protected void
AbstractFieldMatrix. checkSubMatrixIndex(int startRow, int endRow, int startColumn, int endColumn)
Check if submatrix ranges indices are valid.static void
MatrixUtils. checkSubMatrixIndex(AnyMatrix m, int startRow, int endRow, int startColumn, int endColumn)
Check if submatrix ranges indices are valid.void
AbstractFieldMatrix. copySubMatrix(int startRow, int endRow, int startColumn, int endColumn, T[][] destination)
Copy a submatrix.void
AbstractRealMatrix. copySubMatrix(int startRow, int endRow, int startColumn, int endColumn, double[][] destination)
Copy a submatrix.void
FieldMatrix. copySubMatrix(int startRow, int endRow, int startColumn, int endColumn, T[][] destination)
Copy a submatrix.void
RealMatrix. copySubMatrix(int startRow, int endRow, int startColumn, int endColumn, double[][] destination)
Copy a submatrix.FieldMatrix<T>
AbstractFieldMatrix. getSubMatrix(int startRow, int endRow, int startColumn, int endColumn)
Get a submatrix.RealMatrix
AbstractRealMatrix. getSubMatrix(int startRow, int endRow, int startColumn, int endColumn)
Gets a submatrix.RealMatrix
Array2DRowRealMatrix. getSubMatrix(int startRow, int endRow, int startColumn, int endColumn)
Gets a submatrix.FieldMatrix<T>
BlockFieldMatrix. getSubMatrix(int startRow, int endRow, int startColumn, int endColumn)
Get a submatrix.BlockRealMatrix
BlockRealMatrix. getSubMatrix(int startRow, int endRow, int startColumn, int endColumn)
Gets a submatrix.FieldMatrix<T>
FieldMatrix. getSubMatrix(int startRow, int endRow, int startColumn, int endColumn)
Get a submatrix.RealMatrix
RealMatrix. getSubMatrix(int startRow, int endRow, int startColumn, int endColumn)
Gets a submatrix.T
AbstractFieldMatrix. walkInColumnOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in column order.T
AbstractFieldMatrix. walkInColumnOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in column order.double
AbstractRealMatrix. walkInColumnOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in column order.double
AbstractRealMatrix. walkInColumnOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in column order.T
Array2DRowFieldMatrix. walkInColumnOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in column order.T
Array2DRowFieldMatrix. walkInColumnOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in column order.double
Array2DRowRealMatrix. walkInColumnOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in column order.double
Array2DRowRealMatrix. walkInColumnOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in column order.T
FieldMatrix. walkInColumnOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in column order.T
FieldMatrix. walkInColumnOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in column order.double
RealMatrix. walkInColumnOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in column order.double
RealMatrix. walkInColumnOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in column order.T
ArrayFieldVector. walkInDefaultOrder(FieldVectorChangingVisitor<T> visitor, int start, int end)
Visits (and possibly alters) some entries of this vector in default order (increasing index).T
ArrayFieldVector. walkInDefaultOrder(FieldVectorPreservingVisitor<T> visitor, int start, int end)
Visits (but does not alter) some entries of this vector in default order (increasing index).double
ArrayRealVector. walkInDefaultOrder(RealVectorChangingVisitor visitor, int start, int end)
Visits (and possibly alters) some entries of this vector in default order (increasing index).double
ArrayRealVector. walkInDefaultOrder(RealVectorPreservingVisitor visitor, int start, int end)
Visits (but does not alter) some entries of this vector in default order (increasing index).double
RealVector. walkInDefaultOrder(RealVectorChangingVisitor visitor, int start, int end)
Visits (and possibly alters) some entries of this vector in default order (increasing index).double
RealVector. walkInDefaultOrder(RealVectorPreservingVisitor visitor, int start, int end)
Visits (but does not alter) some entries of this vector in default order (increasing index).T
SparseFieldVector. walkInDefaultOrder(FieldVectorChangingVisitor<T> visitor, int start, int end)
Visits (and possibly alters) some entries of this vector in default order (increasing index).T
SparseFieldVector. walkInDefaultOrder(FieldVectorPreservingVisitor<T> visitor, int start, int end)
Visits (but does not alter) some entries of this vector in default order (increasing index).T
AbstractFieldMatrix. walkInOptimizedOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries using the fastest possible order.T
AbstractFieldMatrix. walkInOptimizedOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries using the fastest possible order.double
AbstractRealMatrix. walkInOptimizedOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries using the fastest possible order.double
AbstractRealMatrix. walkInOptimizedOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries using the fastest possible order.T
ArrayFieldVector. walkInOptimizedOrder(FieldVectorChangingVisitor<T> visitor, int start, int end)
Visits (and possibly change) some entries of this vector in optimized order.T
ArrayFieldVector. walkInOptimizedOrder(FieldVectorPreservingVisitor<T> visitor, int start, int end)
Visits (but does not alter) some entries of this vector in optimized order.double
ArrayRealVector. walkInOptimizedOrder(RealVectorChangingVisitor visitor, int start, int end)
Visits (and possibly change) some entries of this vector in optimized order.double
ArrayRealVector. walkInOptimizedOrder(RealVectorPreservingVisitor visitor, int start, int end)
Visits (but does not alter) some entries of this vector in optimized order.T
BlockFieldMatrix. walkInOptimizedOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries using the fastest possible order.T
BlockFieldMatrix. walkInOptimizedOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries using the fastest possible order.double
BlockRealMatrix. walkInOptimizedOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries using the fastest possible order.double
BlockRealMatrix. walkInOptimizedOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries using the fastest possible order.T
FieldMatrix. walkInOptimizedOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries using the fastest possible order.T
FieldMatrix. walkInOptimizedOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries using the fastest possible order.double
RealMatrix. walkInOptimizedOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries using the fastest possible order.double
RealMatrix. walkInOptimizedOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries using the fastest possible order.double
RealVector. walkInOptimizedOrder(RealVectorChangingVisitor visitor, int start, int end)
Visits (and possibly change) some entries of this vector in optimized order.double
RealVector. walkInOptimizedOrder(RealVectorPreservingVisitor visitor, int start, int end)
Visits (but does not alter) some entries of this vector in optimized order.T
SparseFieldVector. walkInOptimizedOrder(FieldVectorChangingVisitor<T> visitor, int start, int end)
Visits (and possibly change) some entries of this vector in optimized order.T
SparseFieldVector. walkInOptimizedOrder(FieldVectorPreservingVisitor<T> visitor, int start, int end)
Visits (but does not alter) some entries of this vector in optimized order.T
AbstractFieldMatrix. walkInRowOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.T
AbstractFieldMatrix. walkInRowOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order.double
AbstractRealMatrix. walkInRowOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.double
AbstractRealMatrix. walkInRowOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order.T
Array2DRowFieldMatrix. walkInRowOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.T
Array2DRowFieldMatrix. walkInRowOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order.double
Array2DRowRealMatrix. walkInRowOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.double
Array2DRowRealMatrix. walkInRowOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order.T
BlockFieldMatrix. walkInRowOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.T
BlockFieldMatrix. walkInRowOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order.double
BlockRealMatrix. walkInRowOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.double
BlockRealMatrix. walkInRowOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order.T
FieldMatrix. walkInRowOrder(FieldMatrixChangingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.T
FieldMatrix. walkInRowOrder(FieldMatrixPreservingVisitor<T> visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order.double
RealMatrix. walkInRowOrder(RealMatrixChangingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (and possibly change) some matrix entries in row order.double
RealMatrix. walkInRowOrder(RealMatrixPreservingVisitor visitor, int startRow, int endRow, int startColumn, int endColumn)
Visit (but don't change) some matrix entries in row order. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.ode
Methods in org.apache.commons.math4.legacy.ode that throw NumberIsTooSmallException Modifier and Type Method Description abstract void
AbstractIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.double
AbstractIntegrator. integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
Integrate the differential equations up to the given time.FieldODEStateAndDerivative<T>
FirstOrderFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.double
FirstOrderIntegrator. integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
Integrate the differential equations up to the given time.protected void
AbstractFieldIntegrator. sanityChecks(FieldODEState<T> eqn, T t)
Check the integration span.protected void
AbstractIntegrator. sanityChecks(ExpandableStatefulODE equations, double t)
Check the integration span.protected void
MultistepFieldIntegrator. start(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T t)
Start the integration.protected void
MultistepIntegrator. start(double t0, double[] y0, double t)
Start the integration.Constructors in org.apache.commons.math4.legacy.ode that throw NumberIsTooSmallException Constructor Description MultistepFieldIntegrator(Field<T> field, String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build a multistep integrator with the given stepsize bounds.MultistepIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build a multistep integrator with the given stepsize bounds. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.ode.nonstiff
Methods in org.apache.commons.math4.legacy.ode.nonstiff that throw NumberIsTooSmallException Modifier and Type Method Description protected T
AdaptiveStepsizeFieldIntegrator. filterStep(T h, boolean forward, boolean acceptSmall)
Filter the integration step.protected double
AdaptiveStepsizeIntegrator. filterStep(double h, boolean forward, boolean acceptSmall)
Filter the integration step.FieldODEStateAndDerivative<T>
AdamsBashforthFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
AdamsBashforthIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.abstract FieldODEStateAndDerivative<T>
AdamsFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.abstract void
AdamsIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.FieldODEStateAndDerivative<T>
AdamsMoultonFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
AdamsMoultonIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.abstract void
AdaptiveStepsizeIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.FieldODEStateAndDerivative<T>
EmbeddedRungeKuttaFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
EmbeddedRungeKuttaIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.void
GraggBulirschStoerIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.FieldODEStateAndDerivative<T>
RungeKuttaFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
RungeKuttaIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.protected void
AdaptiveStepsizeFieldIntegrator. sanityChecks(FieldODEState<T> eqn, T t)
Check the integration span.protected void
AdaptiveStepsizeIntegrator. sanityChecks(ExpandableStatefulODE equations, double t)
Check the integration span.Constructors in org.apache.commons.math4.legacy.ode.nonstiff that throw NumberIsTooSmallException Constructor Description AdamsBashforthFieldIntegrator(Field<T> field, int nSteps, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build an Adams-Bashforth integrator with the given order and step control parameters.AdamsBashforthIntegrator(int nSteps, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build an Adams-Bashforth integrator with the given order and step control parameters.AdamsFieldIntegrator(Field<T> field, String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build an Adams integrator with the given order and step control parameters.AdamsIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build an Adams integrator with the given order and step control parameters.AdamsMoultonFieldIntegrator(Field<T> field, int nSteps, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build an Adams-Moulton integrator with the given order and error control parameters.AdamsMoultonIntegrator(int nSteps, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build an Adams-Moulton integrator with the given order and error control parameters. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.stat
Methods in org.apache.commons.math4.legacy.stat that throw NumberIsTooSmallException Modifier and Type Method Description static double
StatUtils. varianceDifference(double[] sample1, double[] sample2, double meanDifference)
Returns the variance of the (signed) differences between corresponding elements of the input arrays -- i.e., var(sample1[i] - sample2[i]). -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.stat.correlation
Methods in org.apache.commons.math4.legacy.stat.correlation that throw NumberIsTooSmallException Modifier and Type Method Description double
StorelessCovariance. getCovariance(int xIndex, int yIndex)
Get the covariance for an individual element of the covariance matrix.RealMatrix
StorelessCovariance. getCovarianceMatrix()
Returns the covariance matrix.double[][]
StorelessCovariance. getData()
Return the covariance matrix as two-dimensional array. -
Uses of NumberIsTooSmallException in org.apache.commons.math4.legacy.stat.inference
Methods in org.apache.commons.math4.legacy.stat.inference that throw NumberIsTooSmallException Modifier and Type Method Description static double
InferenceTestUtils. homoscedasticT(double[] sample1, double[] sample2)
static double
InferenceTestUtils. homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
double
TTest. homoscedasticT(double[] sample1, double[] sample2)
Computes a 2-sample t statistic, under the hypothesis of equal subpopulation variances.double
TTest. homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Computes a 2-sample t statistic, comparing the means of the datasets described by twoStatisticalSummary
instances, under the assumption of equal subpopulation variances.static double
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
static double
InferenceTestUtils. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
double
TTest. homoscedasticTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.boolean
TTest. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
, assuming that the subpopulation variances are equal.double
TTest. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.static double
InferenceTestUtils. pairedT(double[] sample1, double[] sample2)
double
TTest. pairedT(double[] sample1, double[] sample2)
Computes a paired, 2-sample t-statistic based on the data in the input arrays.static double
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2, double alpha)
double
TTest. pairedTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.boolean
TTest. pairedTTest(double[] sample1, double[] sample2, double alpha)
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1
andsample2
is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha
.static double
InferenceTestUtils. t(double[] sample1, double[] sample2)
static double
InferenceTestUtils. t(double mu, double[] observed)
static double
InferenceTestUtils. t(double mu, StatisticalSummary sampleStats)
static double
InferenceTestUtils. t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
double
TTest. t(double[] sample1, double[] sample2)
Computes a 2-sample t statistic, without the hypothesis of equal subpopulation variances.double
TTest. t(double mu, double[] observed)
Computes a t statistic given observed values and a comparison constant.double
TTest. t(double mu, StatisticalSummary sampleStats)
double
TTest. t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Computes a 2-sample t statistic, comparing the means of the datasets described by twoStatisticalSummary
instances, without the assumption of equal subpopulation variances.static double
InferenceTestUtils. tTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. tTest(double[] sample1, double[] sample2, double alpha)
static double
InferenceTestUtils. tTest(double mu, double[] sample)
static boolean
InferenceTestUtils. tTest(double mu, double[] sample, double alpha)
static double
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats)
static boolean
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats, double alpha)
static double
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
static boolean
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
double
TTest. tTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.boolean
TTest. tTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
.double
TTest. tTest(double mu, double[] sample)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu
.boolean
TTest. tTest(double mu, double[] sample, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsample
is drawn equalsmu
.double
TTest. tTest(double mu, StatisticalSummary sampleStats)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStats
with the constantmu
.boolean
TTest. tTest(double mu, StatisticalSummary sampleStats, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystats
is drawn equalsmu
.double
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.boolean
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1
andsampleStats2
describe datasets drawn from populations with the same mean, with significance levelalpha
.
-