public interface ContinuousDistribution
| Modifier and Type | Interface and Description | 
|---|---|
static interface  | 
ContinuousDistribution.Sampler
Distribution sampling functionality. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ContinuousDistribution.Sampler | 
createSampler(UniformRandomProvider rng)
Creates a sampler. 
 | 
double | 
cumulativeProbability(double x)
For a random variable  
X whose values are distributed according
 to this distribution, this method returns P(X <= x). | 
double | 
density(double x)
Returns the probability density function (PDF) of this distribution
 evaluated at the specified point  
x. | 
double | 
getMean()
Gets the mean of this distribution. 
 | 
double | 
getSupportLowerBound()
Gets the lower bound of the support. 
 | 
double | 
getSupportUpperBound()
Gets the upper bound of the support. 
 | 
double | 
getVariance()
Gets the variance of this distribution. 
 | 
double | 
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution. 
 | 
default double | 
inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution. 
 | 
default double | 
logDensity(double x)
Returns the natural logarithm of the probability density function
 (PDF) of this distribution evaluated at the specified point  
x. | 
default double | 
probability(double x0,
           double x1)
For a random variable  
X whose values are distributed according
 to this distribution, this method returns P(x0 < X <= x1). | 
default double | 
survivalProbability(double x)
For a random variable  
X whose values are distributed according
 to this distribution, this method returns P(X > x). | 
double density(double x)
x.
 In general, the PDF is the derivative of the CDF.
 If the derivative does not exist at x, then an appropriate
 replacement should be returned, e.g. Double.POSITIVE_INFINITY,
 Double.NaN, or the limit inferior or limit superior of the
 difference quotient.x - Point at which the PDF is evaluated.x.default double probability(double x0, double x1)
X whose values are distributed according
 to this distribution, this method returns P(x0 < X <= x1).
 The default implementation uses the identity
 P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)x0 - Lower bound (exclusive).x1 - Upper bound (inclusive).x0 and x1,  excluding the lower
 and including the upper endpoint.IllegalArgumentException - if x0 > x1.default double logDensity(double x)
x.x - Point at which the PDF is evaluated.x.double cumulativeProbability(double x)
X whose values are distributed according
 to this distribution, this method returns P(X <= x).
 In other words, this method represents the (cumulative) distribution
 function (CDF) for this distribution.x - Point at which the CDF is evaluated.x.default double survivalProbability(double x)
X whose values are distributed according
 to this distribution, this method returns P(X > x).
 In other words, this method represents the complementary cumulative
 distribution function.
 By default, this is defined as 1 - cumulativeProbability(x), but
 the specific implementation may be more accurate.
x - Point at which the survival function is evaluated.x.double inverseCumulativeProbability(double p)
X distributed according to this distribution, the
 returned value is:
 \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \le x) \ge p\} & \text{for } 0 \lt p \le 1 \\ \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} & \text{for } p = 0 \end{cases} \]
p - Cumulative probability.p-quantile of this distribution
 (largest 0-quantile for p = 0).IllegalArgumentException - if p < 0 or p > 1.default double inverseSurvivalProbability(double p)
X distributed according to this distribution, the
 returned value is:
 \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \ge x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \ge x) \lt 1 \} & \text{for } p = 1 \end{cases} \]
By default, this is defined as inverseCumulativeProbability(1 - p), but
 the specific implementation may be more accurate.
p - Survival probability.(1-p)-quantile of this distribution
 (largest 0-quantile for p = 1).IllegalArgumentException - if p < 0 or p > 1.double getMean()
double getVariance()
double getSupportLowerBound()
inverseCumulativeProbability(0), i.e.
 \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).double getSupportUpperBound()
inverseCumulativeProbability(1), i.e.
 \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).ContinuousDistribution.Sampler createSampler(UniformRandomProvider rng)
rng - Generator of uniformly distributed numbers.Copyright © 2018–2022 The Apache Software Foundation. All rights reserved.