public abstract class TDistribution extends Object
The probability density function of
for
ContinuousDistribution.Sampler
Modifier and Type | Method and Description |
---|---|
ContinuousDistribution.Sampler |
createSampler(UniformRandomProvider rng)
Creates a sampler.
|
double |
getDegreesOfFreedom()
Gets the degrees of freedom parameter of this distribution.
|
abstract double |
getMean()
Gets the mean of this distribution.
|
double |
getSupportLowerBound()
Gets the lower bound of the support.
|
double |
getSupportUpperBound()
Gets the upper bound of the support.
|
abstract double |
getVariance()
Gets the variance of this distribution.
|
double |
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.
|
double |
inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution.
|
static TDistribution |
of(double degreesOfFreedom)
Creates a Student's t-distribution.
|
double |
probability(double x0,
double x1)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1) . |
double |
survivalProbability(double x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X > x) . |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
cumulativeProbability, density, logDensity
public static TDistribution of(double degreesOfFreedom)
degreesOfFreedom
- Degrees of freedom.IllegalArgumentException
- if degreesOfFreedom <= 0
public double getDegreesOfFreedom()
public double survivalProbability(double x)
X
whose values are distributed according
to this distribution, this method returns P(X > x)
.
In other words, this method represents the complementary cumulative
distribution function.
By default, this is defined as 1 - cumulativeProbability(x)
, but
the specific implementation may be more accurate.
x
- Point at which the survival function is evaluated.x
.public double inverseSurvivalProbability(double p)
X
distributed according to this distribution, the
returned value is:
By default, this is defined as inverseCumulativeProbability(1 - p)
, but
the specific implementation may be more accurate.
The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
for p = 1
,ContinuousDistribution.getSupportUpperBound()
for p = 0
, orsurvivalProbability(x) - p
.
The bounds may be bracketed for efficiency.inverseSurvivalProbability
in interface ContinuousDistribution
p
- Survival probability.(1-p)
-quantile of this distribution
(largest 0-quantile for p = 1
).public abstract double getMean()
For degrees of freedom parameter
NaN
if it is not defined.public abstract double getVariance()
For degrees of freedom parameter
NaN
if it is not defined.public double getSupportLowerBound()
inverseCumulativeProbability(0)
, i.e.
The lower bound of the support is always negative infinity.
negative infinity
.public double getSupportUpperBound()
inverseCumulativeProbability(1)
, i.e.
The upper bound of the support is always positive infinity.
positive infinity
.public double probability(double x0, double x1)
X
whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1)
.
The default implementation uses the identity
P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
probability
in interface ContinuousDistribution
x0
- Lower bound (exclusive).x1
- Upper bound (inclusive).x0
and x1
, excluding the lower
and including the upper endpoint.public double inverseCumulativeProbability(double p)
X
distributed according to this distribution, the
returned value is:
The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
for p = 0
,ContinuousDistribution.getSupportUpperBound()
for p = 1
, orcumulativeProbability(x) - p
.
The bounds may be bracketed for efficiency.inverseCumulativeProbability
in interface ContinuousDistribution
p
- Cumulative probability.p
-quantile of this distribution
(largest 0-quantile for p = 0
).IllegalArgumentException
- if p < 0
or p > 1
public ContinuousDistribution.Sampler createSampler(UniformRandomProvider rng)
createSampler
in interface ContinuousDistribution
rng
- Generator of uniformly distributed numbers.Copyright © 2018–2022 The Apache Software Foundation. All rights reserved.