Class PoissonSampler
- java.lang.Object
-
- org.apache.commons.rng.sampling.distribution.SamplerBase
-
- org.apache.commons.rng.sampling.distribution.PoissonSampler
-
- All Implemented Interfaces:
DiscreteSampler
,SharedStateDiscreteSampler
,SharedStateSampler<SharedStateDiscreteSampler>
public class PoissonSampler extends SamplerBase implements SharedStateDiscreteSampler
Sampler for the Poisson distribution.-
For small means, a Poisson process is simulated using uniform deviates, as described in
Knuth (1969). Seminumerical Algorithms. The Art of Computer Programming, Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution. Addison Wesley.
The Poisson process (and hence, the returned value) is bounded by1000 * mean
. -
For large means, we use the rejection algorithm described in
Devroye, Luc. (1981). The Computer Generation of Poisson Random Variables
Computing vol. 26 pp. 197-207.
Sampling uses:
UniformRandomProvider.nextDouble()
UniformRandomProvider.nextLong()
(large means only)
- Since:
- 1.0
-
-
Constructor Summary
Constructors Constructor Description PoissonSampler(UniformRandomProvider rng, double mean)
This instance delegates sampling.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static SharedStateDiscreteSampler
of(UniformRandomProvider rng, double mean)
Creates a new Poisson distribution sampler.int
sample()
Creates anint
sample.String
toString()
SharedStateDiscreteSampler
withUniformRandomProvider(UniformRandomProvider rng)
Create a new instance of the sampler with the same underlying state using the given uniform random provider as the source of randomness.-
Methods inherited from class org.apache.commons.rng.sampling.distribution.SamplerBase
nextDouble, nextInt, nextInt, nextLong
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.apache.commons.rng.sampling.distribution.DiscreteSampler
samples, samples
-
-
-
-
Constructor Detail
-
PoissonSampler
public PoissonSampler(UniformRandomProvider rng, double mean)
This instance delegates sampling. Use the factory methodof(UniformRandomProvider, double)
to create an optimal sampler.- Parameters:
rng
- Generator of uniformly distributed random numbers.mean
- Mean.- Throws:
IllegalArgumentException
- ifmean <= 0
ormean > 0.5 *
Integer.MAX_VALUE
.
-
-
Method Detail
-
sample
public int sample()
Creates anint
sample.- Specified by:
sample
in interfaceDiscreteSampler
- Returns:
- a sample.
-
toString
public String toString()
- Overrides:
toString
in classSamplerBase
-
withUniformRandomProvider
public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng)
Create a new instance of the sampler with the same underlying state using the given uniform random provider as the source of randomness.- Specified by:
withUniformRandomProvider
in interfaceSharedStateSampler<SharedStateDiscreteSampler>
- Parameters:
rng
- Generator of uniformly distributed random numbers.- Returns:
- the sampler
- Since:
- 1.3
-
of
public static SharedStateDiscreteSampler of(UniformRandomProvider rng, double mean)
Creates a new Poisson distribution sampler.- Parameters:
rng
- Generator of uniformly distributed random numbers.mean
- Mean.- Returns:
- the sampler
- Throws:
IllegalArgumentException
- ifmean <= 0
ormean > 0.5 *
Integer.MAX_VALUE
.- Since:
- 1.3
-
-