CPD Results
The following document contains the results of PMD's CPD 7.2.0.
Duplications
File |
Line |
org/apache/commons/rng/sampling/distribution/ZigguratSampler.java |
779 |
org/apache/commons/rng/sampling/distribution/ZigguratSampler.java |
791 |
/* [ 8] */ (byte) 0, (byte) 0, (byte) 0, (byte) 0, (byte) 1, (byte) 1, (byte) 1, (byte) 253,
/* [ 16] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 24] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 32] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 40] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 48] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 56] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 64] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 72] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 80] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 88] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [ 96] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253,
/* [104] */ (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, (byte) 253, |
File |
Line |
org/apache/commons/rng/sampling/distribution/ZigguratSampler.java |
279 |
org/apache/commons/rng/sampling/distribution/ZigguratSampler.java |
289 |
/* [ 16] */ (byte) 0, (byte) 0, (byte) 1, (byte) 1, (byte) 1, (byte) 1, (byte) 2, (byte) 2,
/* [ 24] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 32] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 40] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 48] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 56] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 64] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 72] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 80] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 88] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252,
/* [ 96] */ (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, (byte) 252, |
File |
Line |
org/apache/commons/rng/sampling/distribution/MarsagliaTsangWangDiscreteSampler.java |
234 |
org/apache/commons/rng/sampling/distribution/MarsagliaTsangWangDiscreteSampler.java |
376 |
private static int fill(byte[] table, int from, int to, byte value) {
for (int i = from; i < to; i++) {
table[i] = value;
}
return to;
}
@Override
public int sample() {
final int j = rng.nextInt() >>> 2;
if (j < t1) {
return table1[j >>> 24] & MASK;
}
if (j < t2) {
return table2[(j - t1) >>> 18] & MASK;
}
if (j < t3) {
return table3[(j - t2) >>> 12] & MASK;
}
if (j < t4) {
return table4[(j - t3) >>> 6] & MASK;
}
// Note the tables are filled on the assumption that the sum of the probabilities.
// is >=2^30. If this is not true then the final table table5 will be smaller by the
// difference. So the tables *must* be constructed correctly.
return table5[j - t4] & MASK;
}
@Override
public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new MarsagliaTsangWangBase64Int8DiscreteSampler(rng, this); |
File |
Line |
org/apache/commons/rng/sampling/distribution/BoxMullerGaussianSampler.java |
76 |
org/apache/commons/rng/sampling/distribution/BoxMullerNormalizedGaussianSampler.java |
49 |
}
/** {@inheritDoc} */
@Override
public double sample() {
final double random;
if (Double.isNaN(nextGaussian)) {
// Generate a pair of Gaussian numbers.
// Avoid zero for the uniform deviate y.
// The extreme tail of the sample is:
// y = 2^-53
// r = 8.57167
final double x = rng.nextDouble();
final double y = InternalUtils.makeNonZeroDouble(rng.nextLong());
final double alpha = 2 * Math.PI * x;
final double r = Math.sqrt(-2 * Math.log(y));
// Return the first element of the generated pair.
random = r * Math.cos(alpha);
// Keep second element of the pair for next invocation.
nextGaussian = r * Math.sin(alpha);
} else {
// Use the second element of the pair (generated at the
// previous invocation).
random = nextGaussian;
// Both elements of the pair have been used.
nextGaussian = Double.NaN;
}
return standardDeviation * random + mean; |
File |
Line |
org/apache/commons/rng/sampling/distribution/MarsagliaTsangWangDiscreteSampler.java |
198 |
org/apache/commons/rng/sampling/distribution/MarsagliaTsangWangDiscreteSampler.java |
340 |
final byte k = (byte) (i + offset);
n1 = fill(table1, n1, n1 + getBase64Digit(m, 1), k);
n2 = fill(table2, n2, n2 + getBase64Digit(m, 2), k);
n3 = fill(table3, n3, n3 + getBase64Digit(m, 3), k);
n4 = fill(table4, n4, n4 + getBase64Digit(m, 4), k);
n5 = fill(table5, n5, n5 + getBase64Digit(m, 5), k);
}
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
private MarsagliaTsangWangBase64Int8DiscreteSampler(UniformRandomProvider rng, |
|